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Preface

This work represents the outcomet of my attempt to

formulate and solve a two spacecraft encounter viewed as a

differential game. The vehicles are constrained to maneuver

in only two dimensions, but the gravity field is allowed to

vary as a function of altitude. Much of the work centers

around pseudo linearized equations of motion,

I wish to express my appreciation to the faculty members

of the Air Force Institute of Technology who have either

influenced or assisted me in this effort. In particular, I

an indebted to Prof. Gerald M. Anderson for introducing me

to the field of optimization theory and for guiding my thesis

tffort.

Richard H. Woodward
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Abstract

This paper considers the problem of developing the

optimum thrust angle programs for twfo constant mass. constant

thrust spacecraft engaged in pursuit and evasion in near-

earth orbit. The problem is formulated as a differential

Same in which the pursuer attempts to minimize the final

separation distance while the evader attempts to maximize it.

The problem is approached by linearizing the equations

of motion about a circular reference orbit at the earth's

surface. The validity of the linearized equations is

verified by comparing a linearized trajectory to six non-

linear trajectories. Optimum non-linear trajectories are

generated by backward integration. The fixed-time and

free-time two point boundary value problems are solved for

the linear case. It is found that convergence tc a free-time

solution becomes exceedingly difficult if the flight time is

short.

A pseudo closed loop control law is developed and tested

numerically against two non-optimum evaders. The results of

this control law test are promising but further tests are

warranted due to the limited number of cases considered.

• xi
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o PURSUIT-EVASION GAMES BETWEEN TWO SPACECRAFT

IN NEAR-EARTH ORBIT

I. Introduction

Background

The advent of viable military rpace systems by poten-

tially agressive foreign powers has raised the possibility

of our country's earth satellites coming under hostile

attack. Such a possibility has prompted a need for an

Investigation to determine the optimum methods of avoiding

destruction or capture in the event of such an encounter.

Problem

This study analyzes the pursuit-evasion situation

0 through the use of differential game theory. The specific

situation investigated is the two dimensional (planar)

problem in near-earth orbit with the final separation dis-

tance between the two vehicles being the :ere sum payoff,

Both the fixed and free-time problems are discussed.

Current Kiowledge

There has been much successful rork over the last

decade using differential games to investigate aircraft

pursuit-evasion problens. However, there have been but

relatively few attempts to utilize this game technique in

the study of orbital problems. Billik (Ref 2) used differ-

ential games to solve the minimum energy, fixed-tine problem

0 in an inveese square gravity field. Wong (Ref 4) used the
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= •same technique to investigate the fixed-time, minimum final

separation, assuming that the encounter took pl-te in a

region where gravity was constant. To date, there apparently

have been no published solutions to the minimum distance,

free-time problem in an inverse square gravity field. The

absence of solutions is probably due to the complications

which arise primarily due to the free-time aspect of the

problem.

Scope

This thesis will consider the minimum distance, fixed

and free-time problems in an inverse square gravity field.

This study will consider only the end 2ame, that is, the

isituation after the pursuer has closed to within about 100

nautical miles of the evader and is continuing to close.

This magnitude of distance has been selected as a maximum

range for an on-board radar system. Not considered will be

any action on the part of either vehicle before that situa-

tion is reached, that is, gross rendezvous will not be con-

sidered. Also, this thesis wilt consider the formulation of

both open loop and closed loop control laws.

Assumptions

The assumptions to be made follow. Where applicable,

a brief explanation is offered.

1. Free time. The overall objective is to bolve the

free-time problem as it is felt that this is a more realistic

O situation than constraining the time of game termination.

2
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However, in the course of obtaining free-time solutions,

fixed-time solutions are a natural stepping stone. The

fixed-time solutions are also important in their own right

and are useful for modeling certain scenarios, such as

limited fuel cases.

2. Inverse square gravity field.

3. Both vehicles thrust continuously. Once either

vehicle discontinued thrusting, the situation could from

that point on no longer be considered a two player game. If

the pursuer ceased thrusting, the evader would then have a

simple avoidance problem. If the evader quit thrusting, the

pursuer would have a simple intercept or rendezvous ?roblem.

The latter situation has already received considerable

- 0 attention.

4. The thrust magnitude of each vehicle is fixed.

Even with variable thrust engines, the players would find

it most advantageous to use maximum thrust for maximum

control.

S. Control is provided by varying the direction of

thrust.

6. Payoff will be the separation distance at problem

termination. For the free-time problem, this will be at

the point of closest approach. The effectiveness of the

pursuer will be related to how close he can get to the

evader. The evader, on the other hand, wilJ desire to maxi-

size that separation distance.

7. Perfect information. Each vehicle 'ill be aware of

3
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the current state and capabilitier of both vehicles.

8. Fixed mass. This eliminates one area of extreme

complications which could be a study in itself. This assump-

tion is a good approximation when considering low thrust and

relatively short burn durations, In addition, the larger the

"vehiclI, the less is the introduced errors

9. No barriers or ill-defined surfaces. That Is, it

will be assumed that the solution in the small is valid.

Approach

1. Linearize the equations of motion about a circular

reference orbit.

2. Set up appropriate equations for a differential game

formulation of both the linear and non-linear equations.

3. Apply the necessary conditions for the optimal

minimax solution as dictated by general optimization tech-

niques.

4. Compare an open loop linear trajectory to open loop

non-linear trajectories to check the validity cf the

linearized formulation with respect to the end conditions.

S. Solve the linear fixed-time two point boundary

value problem (TPBVP) by using sets of initial conditions

obtained from the open loop non-linear trajectories. This

will allow comparison of the linear and non-linear trajec-

tories with respect to the initial conditions.

6. Extend the TP8VP solution to the free-time case.

Q• 7. revelop and test a form of a near-optimal closed

loop control law for the optimal trajectory.
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II. General Eqtations

Mon-linear Eqaations of Motion

Almozt any text on dynamics can be consulted for the

general equations for two dimensional orbital motion. They

are as follows:

- r -U T sin (r - r_2 - 2I

r

ri + 2r . T cos a (2)

Where as shown in Fig. 1, a is measured from the local hori-

zontal, It i, desirable to have these equations in terms of

the radial and transverse velocities, Vr and V respectively,

where

Sr v r (3a)

and

V a rO (3b)

Making use of these velocities, we can replace the

terms in Eqs (1) and (2) involving r, r, 6 and B to yield

V02 T sin a
V -- r sin a (4a)

r

vVr
i n T cos a (4b)

e r a

The above are the non-linear equations of motion,

S
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S acecraft T
r

Lc a 1

-6 Horizontal

S~/

Earth's Center

Fig. 1. Orbital Geometry.
S0

Linearized Equations of Motion

Linearization of Eqs (3) and (4) yield

i - AV (Sa)r

AVO VeAr
"- -- - (Sb)
r ' 2r

2V 0AV6 e v6
2  2p) Tsin a

AV - - 4I --1- , - (6)
r r \r' r

and

VrAV V AV VrV Ar
AV r e- + r r6 T coa (7)

r r a

6
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where now r, V6 and Vr refer to some reference orbit and the

delta quantities refer to deviations from that reference

orbit. Letting the reference orbit be circular allo-s the

following simplifications:

V *0
r

and

2 u
re

orr

r 2

Usiag the above in Eqs (6) and (7) yields

* 2VV V6 e 2Ar T sin a (a)

r r ---r (r

tiYI T cos a SbAV " . Vr m (8b)

Equations (5) and (8) are now the linearized equations of

motion.

Non-linear Separation

Figure 2 illustrates the geometry involved with

determining the separation distance between two orbital

vehicles, hereafter called a pursuer (P) and an evader (E).

7
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Earth's Center

-- 0 [

Fig. 2. Non-lirear Separation.

From the law of cosines,

S2 . r
2 

,p 2 rErP cos(eP - eE) (91

Separation in Linearized Coo-dinates

Figure 3 illlistrates the save geometry as related to

a reference orbit., Again from the law of cosines

"d 2 r . Arp) + (r + ArE) 2

-2(r * Arp)(r + arL) cos (A
6
p - AeE) (10)

Q By expanding Eq (10) in a Taylor series and eliminatingS!
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higher order terms on the assumption that Ar << r, the

following is obtained.

- -d2 = ( Arp - ArE)2 + r 2(Ap - AO£)2 (11)

Normalized Equations

It should be noted that the numerical values of pzrameters

such as r and V will differ by several orders of magnitude.

That is, V may he several miles per second while r may be

several thousand miles. Because of this computation that

involves both parameters may result in information being lost

due to a lack of significant digits, To avoid this, it is

desirable to normalize the equations of interest so that all

parameters will be of the same order of magnitude,

3• This author, like so many before him chose to normalize

the equations with respect to a circular orbit at the sur-

face of a spherical earth. Thus, distances become normalized

by r0 , the radius of the earth surface orbit, while the

velocities become normalized by VO, the transverse orbital

velocity of that circular orbit.

The use of a circular orbit allows one to simplify the

gravitational constant ?j. Since v equals the product of any

circular orbit's velocity squared and that circular orbit's

"radius, the use of a circular orbit allows the value of u to

be replaced by simply unity.

10
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O It should immediately be pointed out that the normaliza-

tion is not without its drawback. The unit of time must also

become non-dimensional, Thus, introduce a non-dimensional

characteristic time unit

Vot
t - t (12)r 0

This will necessitate changing the time derivatives to tau

derivatives by use of the chain rule for differentiation.

SdO d( ) dt r0 d (13)
dT dt d- V0  ( )t

Sinco differentiation with rzspzct to time is indicated

by a dot, differentiation with respect to tau will be

0 denoted by a prime, hence

dYr . V1
dr r

Non-linear Normalization

Using the aforementioned procedure, it is now possible

to normalize the non-linear equations. First define the

following normalized state variables.

x r L_ (14a)
I r 0

V
x r-E (14b)

2 V 0

-0

= IX 11



GA/MC/72-7

O 3 a e (140)

x4  (14d)
4

Then making ue of Eq (13).

-1 .- 2 (IS a)

Likewise,

dx 2  r0 dx 2-W T- V-0 dt

r V ý
2

T sin .i]V r0 1 r r2

x 4 2 r0 T sin a
a

-1 12 V 2

By defining

r-_ V0 TU 
2

v0

where both T (thrust) and a (mass) remain constant, the last

equation can be written as

x2 _j_ 1l * u sin Ct (ISb)
1 a1 2

.- 0

.- • 12
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Equations (3b) and (13) yield

x 14 (lSc)

finally,

S- - . u Cos % (lSd)

Equations (IS) now are the normalized, non-linear state

equations. The square of the non-linear separation, Eq '9),

can also be normalized. Let the result be called D2 .

D lE 2* xlp -
2

XlExlP Cos (X3p - x3E) (16)

0 Linearized Equations

Using the same procedure, it is possib!e tr normalize

the linear equ.tions, Define the following normalized

linear state variables.

AxI - (17a)1 r 0

AV
Ax2 ' V r(17b)

Ax3 . AG (17c)

AX4 £'V (17d)
4 V 0

13
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Now making use of Eq (13) and th. linear equations, the

state equations can be derived.

Ax (18a)

2V roAx V 
2

rO
2I•x

= 0 u sin L (18b)0
2 V r Vor2 2

0 V r

rt
where u is again defined as 0

Also,

X •roAX4  ro
2

V6 gXl

Ax* A1 - r xI(l8c)Sr r-V 018

and lastly,

-r VA
Ax4 rV0  * u cos a (18d)

Observation of Eqs (18) yields the conclusion that

considerable simplification could be made if the reference

orbit used for linearizing were identical to the orbit used

for normalizing; i.e., r = r 0 and Ve = V Making that very

3iMplification. the following normalized, linearized state

equations follow:

x Ax2 (19a)

0 'x - 2Ax 4 + Ax1 4 u sin a (19h)

14

i--i-, ., .. ,.,,,
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Ax'• - Ax (19c)3 4

Ax' -Ax 2  u cos a (19d)

As before, Eq (11) can also be normaltzed to yield

D 2 (Ax 1 p - Axld 2 4 (Ax3 p - axSE) 2 (20)

It should be noted here that the state equations,

Eq (19),are only linear in the states. Those equations are

not linear in the control angle a. Thus, even though they

will be referred to as linear equations, the reader should

be aware of the non-linearity involved in the control

function.

0is

0t
) |15
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I11. Differential Game Formulation

The formulation of the problems herein follows the

standard pattern described in Bryson and Ho (Rof 2). The

quantity to be minimaxed is the square of the final separa-

tion distance,

In the free-time problem, the final separation distance

will be the minimum separation distance and the final time

will thus occur at the point of closest approach. This

separation distance at the point of closest approach is

the quantity that the pursuer desires to minimize while the

evader wishes to maximize it.

In the fixed-time problem, there are no assurances

that the final separation distance will be the point of

closest approach. However, if one would solve a large

number of different fixed time problems, all with the sane

initial states, the final separation distance of one

particular solution would be less than any of the others.

That one particular fixed-time solution would then also

be the free-time solutien. Thus, the solution to the

free-time problem is also the solution to one particular

fixed-time problem, Hence, the technique used by this

author to solve the free-time problem was simply to find

that particular fixed-time solution whose final states

corresponded to the point of closest approach.

16
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For that reason, both the free and fixed-time two point

boundary value problems will be presented here in linearized,

normalized form, suitable for numerical solution. In

addition, the non-linear normalized free-time two point

-* boundary value problem will also be presented. The main

purpose of the non-linear formulation is to serve as a

comparison for the linear approximation formulations.

?Non-linear Free-time TPBVP

The non-linear state equations. Eqs (IS), plus the

range squared expression, Eq (16), form the basis for this

analysis. 3oth the Pursuer (P) and evader (E) have identical

state equations.

Sl!P ' '2P (21a)

2
x' X4 p 1 in
. j-4 Up sin p (21b)lip X Ip XIP2 P

x 4P 
(21c,

x xp , X2 pX4 p Co CO (21d)

K lE . '2E (22a)

2
0xi . - . u sin a (22b)

XE XIE XIE E E

17
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0 4 (22c)
6 I

,• x2Ex4E
+XE U COS aE (22d)

The payoff J becomes the normalized range squared

expreasion, Eq (16),evaluated at the final time.

J.XlEf 2 +x f 2 xlEf 1 fCs( 3pf - x E) (23)

The main equation, or Hamiltonian (H), can be formed

by adjoining the costates to the state equations. Thus

IP 2P 2P x x 2 4 Up sin LP

x4 24PP 
1
4P o

* ~~ L~ + u~ Co sP xlp

x 1E I UE sin a

IE 2E s2E L[X XE
2  E c

-4• E +l E4 "(24)

3E 4E !EE + UE Co aE ]o(24)
Using the relationship A! - costatx

I ax. ' h

differential equations can now be formed.

18
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0I' ' I I [22P (a 4 P' ' - 3Px4 P - A4 Px2 Px4 P] (2

A4 Px 4 P 
M

X~pX p (2Sb) •
lip , -'lp ÷ IP

13p , 0 (25c)

2A 2Px4P A3_ A4 pX 2 P (25d)

2 2

lp ZIp ilp

"iE " 2rA 2  4E 3 A4 EX 2 EX 4 E] (26a)

0
" " , X4E 4E (26b)Z2E •"lE Xl

2X 2Ex4E A3E X4E x2E (26d)

E xE xIE x £

Also from the main equation, Eq (24), the optimum

thrust angles can be found. Using the necessary condition

that E - 0,

8=0 ail- ~ ~ u co a sn

19
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0 From which

tan -A2P

That is, either

sin ap . 2P (27a)

and

Cos &p P (27b)

A2  222P +4p2

o or

sin a p 2 P (28a)

Aý2  .2 4P

and

COS =p - (28b)
2 2I2 p2 + A4 p

Likewise, it can be shown that

"tan aE A2E

E0
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That is, either

sinE ~2E (29a)

2E,

and

cos a E (29b)

2E 4E

S~or

in aE A2 E (30a)

E 2E2 +4E2

0 and

Cos aE X (30b)

X2E + X4E2

The decision concerning which sigus to use can be made

by considering the sufficiency conditions. These are, for
2

the pursuer -i > 0 since he is attempting to minimize the

cost and or the evader H < 0 since he is attempting to

maximize the payoff. Thus, for the pursuer

- 2P~ u Psin ap- A4 PUp cos cp
am p

""0 (31)
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It can be seen that to satisfy the pursuer's sufficiency

condition, Eq (31), that the expressions with the minus

signs, Eqs (28) must be the optimal solutions.

Now, for the evader,

aH2 - X2EUE sin aE A4EUE Cos aE

< 0 (32)

In this case, to satisfy the evader's sufficiency

condition, the angle expressions with the plus signs must

be chosen, Eqs (29).

Now, in an actual encounter, the initial states would

be known, but the end states would not be known. The trans-

0 versality conditions, however, would allow determination of

the costates at the final time from the relation Xf UL

These are as follows:

XIPf * 2[xlpf -x lEf cos (X3 pf - x3Ef)] (33a)

X 2Pf ' 0 (33b)

A 3pf , 2[xlEfxlpf sin (X pf - x3Ef)] L33c)

S4pf " 0 (33d)

A lEf , 2[xlEf - xlpf cos (X3pf - x3Ef)] (34a)

2?
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A 2Ef " 0 (34b)

A3Ef " 2xlEfX lpf sin (X 3 pf - X3Ef) (34c)

X 0Ef 0 (34d)

"Since the cost is not a function of the final time, the

transversality condition also gives the fact that H(rf) - 0.

In addition, since the Hamiltonian, Eq (24), is not an

explicit function of time, then H' - 0 and thus for any

point in time

H(T) - 0 (3S)

O Hence, !. must equal zero at the final time Tf.

Evaluating Eq (24) at Tf and utilizing the transversality

conditions, Eqs (33) and (34), for the costates yields

0 x 2EfX lEf + x 2 pfX lPf

- (x2Efxlpf * IlEfx2 pf) cos (X3 pf - X3 Ef)

* (xlEfx 4 pf - xlpfx4 Ef) sin (X3 pf - x3Ef) (36)

For this free-time formulation, the stopping condition

occurs when the vehicles reach the point cf closest approach.

More formally, the problem would end when the range rate

between the tuo vehicles reaches a zero value. This would

also correspond to the point where the range squared rate
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o reaches zero, It has already been shown that the expression

for range squared is

D2 . X x 2 _ 2x IEXI Cos (X3P - x3E (16)

This expression can be differentiated to yield an equation

for range squared rate. Performing the differentiation

yields

D 2 2x12 x1E * 2x1 pxlp 
2Xi x!ElP cos (x3P - x..)

-2x 1 ExP cos (x3 P x3E * 2 xlElx p sin =x3 P - x30

-
2 xlE xPx3E sin (x 3  - X3E) (37)

rehSubstituting the appropriate state equations, Eqs (IS), for

the primed quantities in Eq (37) yields

D 2  2x2ExIE + 2 x 2 Px IP - 2x 2E X lp cos (x 3P x3E)

- 2xlE X2P cos (X3 p - x3E) * 2XlE Xl4 P sin (x 3 P - x3E)

-
2 xxlpx4 E sin (x 3 P - x3E)

D 2* 2 EXX1E + 2P xIP, - (x2Exlp XlEx 2P) COS (x3p - x3d

(X -x X4E ) sin (x 3 p - x3E)] (38)
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o Note that if one sets Eq (38) equal to zero at the

final time to form the appropriate stopping condition, the

result is identically equal to the final Hamiltonian

expression, Eq (36)! Thus, the stopping condition actually

yields no additional information.

Thus, the non-linear, normalized, free-time two point

boundary value problem consists of the state equations,

Hqs (21) and (22), the costate equations, Eqs (25) and (26),

the payoff, Eq (23), the Hamiltonian, Eq (24), the optimum

control angles, Eqs (28) and (29), the transversality condi-

tions, Eqs (33), (34) and (3S) plus the initial values of

the states,

Linear Free-time TPBVP

The linear state equations, Eqs (19), plus the range

squared expression, Eq (20), form the basis for this formula-

tion. As in the non-linear case, both the pursuer (P) and

evader (E) have identical state equations.

Ax,. X 2P(39a)

AXjp , 21x4p * xlp * up sin ap (39b)

Ax P , 4P iP(3c

Ax ' =-Ax - CAxp (39d)

4P 2P lP p3c

X~p = -AX2 p * up cos ap2 (39d)

0
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AX 1E " "2E (40a)

AxlE 2x4E X * uE sin aE (40b)

3x!E ""4E AX2E (40c)

AxE' ' -Ax u cos a (40d)4E 2B E E 4d

The payoff, J, becomes the normalized, linearized range

squared expression, Eq (20), evaluat 4 d at the final timef

J Xjp O - Ax1 f * (Ax3pf -X3Ef) 2 (41)

The Hamiltonian becomes

S0
H - AlpAx2 p * AlP2p(2'%x 4 P Axlp *u p sin aP)

SAX 3 p(Ax 4 P - Ax1 P) * AX4 P(-Ax 2 p * up cos aP)

*AXIEAX 2E *& A2E(2Ax 4 E ÷ AX* E * uE sin a E)

SAX3E (Ax4E - AxlE) * AA4E(-&x2E + uE cos aE) (42)

Using Eq (42), the costate differential equations

become

AX1P * "'2P * A 3P (43a)

P IP + 42 (43b)
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AX' 0 (43c)

Ax;p . -26A2P - 3p (43d)

AxlE i -"'2E 6'3E (44a)

2l !E l -EIe A'4E (44b)

AX'I - 0 (44c)

3F

AX'4 , -2AX 2 1E A 3E (44d)

The optimum thrust angles can be found from the neces-

sary conditions,

0

" 2P U ap p A4P Up sin ap

From which,

AX, P
tan a F A

4p

As before, either

sin ap A 24S&)

2 Ax 2
VP2 • 4P7

.::• ~27 "=
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o and

Cos ap Xp AX4P 2 (45b)

or

sin ap 2P (46a)
2 2

'VrAX2P + X4 p

and

cos a A - (46b)

0 Likewise it can be shown that

tx2E

where similar choices are avnilable. Either

sin a x 2E (47a)

• X 2 E + 4E2

S~and

4E(47bJ
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or

sin CL l - (48s)

2E"E A•-2E2 + AX 4E2

and

Cos LE X 4 (48b)

4 E2X E 4E

The correct signs are determined by the sufficiency

conditions as was done before in Eqs (31) and (32). To

satisfy those conditions, the pursuer's control must be

described by Eqs (46), while the evader's optimum control

� must be described by Eqs (47).

It is assumed that the initial states are known, but

the end states are not, Using the transversality conditions,

the expressions for the costates at the final time can be

determined in terms of the end states, These are as fol~ows:

AX lpf * 2(Ax lpff - Ax lEf) (48a)

Al2Pf ' 0 (48b)

Al3pf - 2(AX 3pf - Ax$Ef) (48c)

I O4pf * 0 (48d)
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GA/MC/72-7 X1Ef -
2

(AXlpf o AxlEf) (49a)

A 2Ef 0 (49b)

ax = -
2

(Ax 3 Pf - Ax3Ef) (49c)

A4Ef = 0 (49d)

As in the non-linear case, neither the cost, Eq (41),

nor the Haniltonian, Eq (42), is an explicit function of

time. Thus

H(T) - 0 (W0)

Evaluating the Hamiltonian, Eq (42), at the final time,

utilizing the transversality conditions, Eqs (48), (49) and

(40), yields

0 - (Axlpf - Ax lEf)(AX2 pf - Ax2 Ef)

+ (AX pf - Ax 3 Ef)(AXipf - Axlpf - Ax4Ef * AxlEf) (51)

As before, the stopping condition occurs zt the poi-,

of closest approach which is found by differentiatinE the

range squared expression, Eq (20). and equating the result

to zero at the '"al time. Again, the result is iden:ically

equal to Eq (SI). Thus, a• oefore, the stopping cundition

yields no additional information.
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Thus, the linear, normalized, free-time two point

boundary value problem consists of the state equations,

Eqs (39) and (40), the costate equations, Eqs (43) and (44),

the payoff, Eq (41), the Hamiltonian, Eq (42), the optimum

control angles, Eqs (46) and (47), the transversality condi-

tions, Eqs (48), (49), and (50), plus the initial values of

the states.

Linear Fixed-time TPBVP

The fixed-time problem will be identical to the free-

cime formulation just shown, with the following exceptions.

"1. The value of the Hiamiltonian will remain equal

to some unknown constant, not necessarily zero. That is,

H() K.

2. The stopping condition will occur simply when the

final time is reached. This time will not necessaiily

correspond to the point of closest approach,

It is important to note that in either linear formula-

tion, the evader's final costates are simply the negative of

the pursuer's final costates as shown by the transveriality

conditions, Eqs (48) and (49). This, coupled with the fact

that the costate differential equations are dentical for

both the pursuer and evader yield the result that the values

of the evader's costates are always simply the negative of

the pursuer's. That is, AXiP ,-6 AXi" This, in tu~n,

precipitates the additional result that the control angle is

Q identical for each vehicle since the expressions in Eqs (46)

and (47) become identical.
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Linear Relative Difference TI'BVP

Because the evader and pursuer have identical state

and costate equations, and because in the linear formulation

the optimum control angles are identical for each vehicle

I (aP a E), it is ry=:1ble to formulate the TPBVP in a set of

relative difference equations. Define a sot of new state

variable3 Y = AXiP - AXiE (i I ... 4). The system of

state equations now reduces to four instead of the original

eight. Making use of Eqs (39) and (40),

Y; - Ax'p AxiE

- A &2P Ax 2E

= Y2  (S2a)

Lik6wise

Y2'= 2Y4 Y, + Au sin a (S2b)

Y. = Y4 - Y 1'S2c)

Y4'= - Y2 + Au cos a (S2d)

where now Au • uP - uE. This 'erm accounts for the differcnce

between the vehicles' masses and thrusts.

Let..ng P signify the costates in this formulation, the

Hamiltonian now becomes
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H a PI Y2 + P2(2Y 4 + * Au sin 01) . P3(Y4 - I1

+ P 4 (-Y 2 + Au cos a) (53)

From this, the costate differential equations become

P1 . " P2 3 r (S4a)

P2 . - pi + r4 (S4b)

p 03 0 (S4c)

P4 - " 2P2 " P3 ($4d)

SThe value of this optimum thrust angle, a, can be found

by nforcing the necessary and sufficient conditions for

either the pursuer or evader,

P CS -P up sin a
P2 up cos 4L P4

-0

and

0
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* or

E - 2 UE cos a * P4 UE sin a

=0

and

a2 H <0

The resulting expressions are

sin a - 2 (SSa)

0
cos a - (SSb)

FP ' P4

The payoff in relative difference coordinates becomee

I .2 .2 (56)
1 3

Again, the initial values of the state would be known,

but the value at the end condition would be unknown. Thus,

the transversality conditions yield the folaowing values for

the costates at the final condition,

- if l 2Yif (57a)

P 0 (S0b)
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0 3f " 2Y3f (57c)

P4f " 0 (57d)

Note that the costate difierential equations, Eqs (54),

are completely linear. Those differential equations, with

the aid of the boundary conditions, Eqs (57), can be com-

pletely solved in closed form. A detailed solution is

presented in Appendix A. The final closed for- costate

expressions are presented below as a function of the

characteristic time, T, and the time at the terminal point,

f.

p I 4YIf - 6Y 3 f(lf - T) + 4
Y3 f sin (-f - T)S0

- 2Ylf cos (Tf-t) (58a)

SP2 = "-4Y3f * 4Y -T ) + 2Yif sin (Tf - T) (SSb)

P 3 P 2Y3f (S8c)

P4  4 Yif -
6 1 f (1f- - - 4Yif cos (Tf - T)

* 8 Y3 f sin (C f - T) (58d)

Note that to this point in this formulation, nothing has

been mentloned concerning stopping conditions since the formu-

lation has 3een independent of what stopping condition is
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.. used. The final time, -f. may be given (fixed-time problem)

or ma' have to be determined by finding the point of closest

approach (free-time problem). The free-time stopping condi-

tion in relative difference coordinates may be obtained from

the original linear stopping condition, Eq (51). Trans-

forming coordinates yields

S- if YY2f * Y3f (Y4 f - Yif) (59)

Again, note that this is the same result one gets by

evaluating the right hand side of the Hamiltonian,Eq (53).

at the final time.
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oIV. Validity of Linear Approximations

Since the linesrized equations are actually approxima-

tions that assume the encounter occurs somewhere near a set

of reference conditions, in this case r 0 and Vo, the

equations will be less valid the further from these refer-

ence conditions that the operation takes place. That is,

errors due to the linearization will occur whenever the

spacec-afts' altitudes are different from r 0 and whenever

their velocities are different from V It is desirable to

have some idea of the errors that are involved, In particu-

lar, it should be determined which parameter, spacecraft

altitude or velocit7, is more critical in inducing these

errors.0
Comparison Technioue

To investigate this, a linear trajectory was compared

to several non-linear trajectories. Since the costates,

and hence also the control, are functions of the end staces,

it becomes a relatively simple matter to generate optimum

trajectories by starting at some set of final states and

integrating backward in time.

The linear trajectory is independent of the specific

values of the spacecrafts' altitude or velocity since tite

linear equations (in relative difference coordinates) deal

only with the relative differences between the pursuer's and

evadet's states. The non-linear equations do however depend

upon the exact values of the spacecrafts' positions and
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--- v..ocities. Thus, it was possible to compare one linear

trajectory with several non-linear trajectories by simply

insuring that the initial differences (at the final time for

backward integration) in positions and velocities were the

same in each non-linear run. This allows a determination of

the validity of the linear approximations in various actual

non-linear situations,

Standard End Conditions

In all open loop computer runs the vehicles were

assumed to end at the point of closest approach separated

by only a vertical distance (pursuer above the evader),

This corresponds to both Y2f and Y3f in Eq (S9) equalling

z(ro. That is, the differences between the two spacecrafts'

radial velocities and angular positions were zero. The

complete set of specific values at the terrinal surface were:,

Y if 0.006

Y2f 0

Y 3f 0

Y4f 0.0252

These values correspond to a terminal situation whereby

the point of closest approach occurs when the pursuer is

roughly 20 nautical niles above the evader and has a trans-

verse velocit/ of some 65C feet per second greater than the

evader. The author does not wish to imply that there is
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-o anything particularly significant about this choice of

parameters. It simply is a reasonable termi-al surface.

Any set of well behaved values could have been ured, Indeed,

the author invites the reader to pursue this subject with

another such set.

Non-linear Cases

For the non-linear runs, this author chose to specify

the evader's exact final position and velocity with the

pursuer's being determined by the differences given above;

i.e., approximately 20 NM higher and 650 fps faster.

Six non-linear runs were made as shown in Table I, The

first cf these selected the evader's final orbit to be

exactly that orbit used as a reference; i.e., a circular

orbit at the earth's surface. This case (Run 1) was to be

considered the "best" non-linear situation for the linear

approximations,

The next case (Run 2) raised the 6vader's final altitude

by 200 NtI, to 3644 NM. but left its final velocity equal to

that of the reference orbit (4.269 NM/sec). This means that

at the final time, the evader was arriving at the perigee of

its orbit, This altitude increase corresponds to a 5.8;

increase above the reference orbit.

The remaining cases dealt with changing the terminal

velocity of the evader. Runs 3 and 4 decreased the evader's

terminal velocity by 5.8% of the reference orbit's velocity,

Run 3 assumed the evader ended at the reference altitude
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0 Table I

Evader Non-linear End Conditions

Altitude Transverse Velocity
NM NM/second

Run 3444 3644 4.021 4.269 4.517

____(Ref) (Ref) ____ ____

1 X X

2 x X

•-3 X X

4 X X

6 X X
S6 x x

"0 3444 NM) while Run 4 assumed it ended at the higher alti-

tude (3644 NM).

Runs 5 and 6 increased the evader's terminal velocity

b, Le same 5.8% of the reference orbit's velocity. Run 5

ended at 3444 NM, while Run 6 ended at 3644 NM altitude.

Appenoix B contains t,e actual trajectories generated by

these six non-linear runs, Also presented in Apl.ondix E

are the plots of separation distance as a function of time

for each of the s;ix runs.

Results

Figures 4 through 7 show relative differences (unitless

Y coordinates) of these six runs as a function of t:me, Also

0 shown on each figure is the curve obtaincd from the
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o.q1
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O linearized equations, although that curve is often indis-

tiuguishable from Run I (best case).

The time to go in the Y trajectory figures is the

characteristic time difference rf - r. Thus, a time to go

of -1.00 corresponds to about 806 seconds before the final

time.

Note that in all cases except Y3 (which relates the

vehicles' angular position), the runs eventually tend towards

groups based upon like altitude. Thus, Runs 1, 3 and S tend

as a group to separate from the group composed of Runs 2, 4

and 6. Within each of the groups, the different velocities

show their effect.

The exception is in Y 3 ' Figure 6, where velocity appears

Q0 to be the key element. Here, the six runs are clustered in

pairs, each pair representing one velocity. The different

altit-adc% ire hardly noticeable in each pair. In fact,

although more noticeable, even the different velocities

present only minor errors from the linear case. Indeed, it

will be shown later that nearly all fixed-time TPBVP solutions

provide excellent agreement in the Y3 parameter.

In all cases, the velocity increase has an opposite

(but like magnitude) effect from a velocity decrease. It

also can be seen that a velocity decrease (Run 3) from the

referenc? velocity causes the Y parameters to be offset from

the linear, or Run 1, cases in the same direction as the alti-

tude increase, Run 2. Thus the greatest errors in the Y

0U states are caused by the combination of both a velocity
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i decrease and altitude increase, Run 4.

On the other hand, an altitude greater than the

reference orbit (which all real world orbits must be)

induces Y state errors which tend to be offset by a vehicle

transverse velocity greater than the reference velocity. The

amount of velocity increase needed to eliminate the altitude

induced error varies for each Y itate. For instance, for

time within about 0.7S characteristic units of Tf, Y4

requires only about a one to one percentage difference.

Thus for Y4 - Run 6 which has a 5.8% altitude increase and a

S.8% velocity increase provides an excellent correspondence

to the linear and base (Run 1) cases. Y2 - as the opposite

extreme, would require considerable more velocity increase.

-- Q particularly as time becomes further from T £ As time

becomes close to TV all errors become quite small,

Conclusions

Thus, one sees that the linearized equations are

excellent approximations to all the six runs at times very

close to the final time. Also, the linearized equations are

an excellent approximation to the non-linear situation at

the reference irbit (Run 1). Since, for the most part, errors

from increased altitude tend to be offset by increased

velocity, the linearized equations would tend to be most

accurate near the perigees of higher altitude elliptical

orbits ra.her than near their apogees. The accuracy would

also decrease for higher altitude circula' orbits, The
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S0 amount of eccentricity in the elliptical orbit to completely

eliminate the increased altitude induced errors would vary

for each Y state and would also vary as a function of the

time to go.
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V. Solutions to the TPBVP's

Fixed-time TPBVP

Chapter IV presented six numerical nin-linear trajec-

tories and compared then with respc.t to the terminal states,

against the linear trajectory. Thos trajectories were

obtained by backward integration of the equations of motion.

This chapter will present the linear solutions to the fixed-

tiv.e TPBVP's obtained by usiPg as initial conditions selected

points from each of the six trajectories discussed in Chapter

IV. The linear solutions developed use the analytical

formulation of the fixed.time TPBVP for relative difference

coordinates that was presente in Chapter III,

Having the backward generated, optimume, non-linear solu-

tions for six runs- it was desired to see how closely the

linearized solutions to the TPBVP would approximate these

six cases. Thur, three points were chosen from each non-

linear run. The points selected were ac approximattly 0.25,

O.S and 1.0 characteristic time units from the terminal

surface. The set of valhies of the Telative difference

states at each of these points was used as initial conditions

and input to the fixed-time TPBVP solver. The program

iterated on a set of assumed end conditions until it con-

verged to the initial conditions. The linear solutions

generated from each of these points is displayed in Figs. 8

through 13.,

As would be expected, the errors induced from the

linearized solution increase with time, That is, even
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o tnough the linearized solution starts at the same point as

the non-linear solution, the paths tend to diverge with

time. Thus for the most part, the closer the input data is

to zero time to go the more accurate will be the fixed time

solution generated from that point.

Most noticeable is the effect of the different base

altitudes (final evader altitude). Runs 1, 3 and 5 assume a

final evader altitude of 3444 NM. Runs 2, 4 and 6 assume a

final evader altitude of 3644 NM. Three things are readily

noticeable. First, each run in each set appears almost

identical to the other runs in that set. That is, the

results of Run I appear almost identical to the respits of

Run S. Likewise for the other set, Runs 2, 4 and 6.

Secondly, those runs at the higher base altitude (Runs 2, 4

"and 6) exhibit substantially greater errors than do those

runs at the lower altitude (Runs 1, 3 and 5), Thirdly, the

effects of the different base velocities are practically

indistinguishable.

:hus, for the fixed-time solutions, the actual base

altitude is the mo~t important consideration. At this point

it becomes apparr.,t that the further from the linearized

reference altitude one gets, the less accurate will be his

fixed time solution. Here, there appears to be no such

thing as velocity compensation for altitude errors as there

was in Ch.pter IV. Based on the fixed-time results, it

appears most important to linearize the equations of motion
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about an orbit whose altitude 's as close to the actual

altitude of operation as possible.

Free-timse TPBVP

It was attempted to generate free-time solutions from

each of the same points where fixed-time solutions were

generated in the previous chapter, The free-time problem

did not, of course, specify for what time the input data

corresponded. Instead, the free-time solver selected the

time by driving the final rangz squared rate expression to

zero (within some limits).

The method used, as discussed before, was actually to

solve several fixed time problems, forcing the final range

squared rate toward zero by usc of a Newton-Raphson technique.

To solve a fixed time problem requires an estimate of the final

time. It was found that the value of this initial estimate

could be rather arbitrary since the program would iterate to

within an order of magnitude of the correct value within a

very few cycles. However, it was found that the use of a

smaller initial estimate of time to go greatly decreased the

overall convergence time since the time to perform each cycle

or Itcration i; directly related to the estimate of time

to go.

One immedia e result of experimentation was that it was

extremely difficult to generate free-time solutions for those

data inputs close to zero time to go. That is, of the input

data from 0.25, 0.5 and 1.0 characteristic time uni's, only

56



GA/MC/72-7

the data from 1.0 consistently yielded any results. Those

results are displayed in Figs. 14 through 19. The shorter

time problems (0.S and particularly 0.2S) required either

very accurate initial estimates, or very Ilose convergence

tolerances and lengthy convergence (i.e., computer) time.

Since it was desired to obtain solutions that did not require

extremely accurate initial estimates and since the lengthy

time required for solution of the short time to go problers

was greater than the time to go, these particular situations

were not investigated in great detail. Instead, the con-

clusion is made that the initial free-time solution must be

generated when the time to go is still reasonably large.

This initial free-time solution could then be updated and

O improved upon.

Analysis of the free-time solutions shown in Figs. 14

through 19 yields a coaclusion similar to that for the fixed-

time solutions. Again, the six runs are divisible into two

distinct sets. Each set represents a different final alti-

tude. That is, Runs 1, 3 and S all resemble each other and

Runs 2, 4 and 6 also resemble each other, Ulso, as in Oic

previous chapter, the higher altitude runs (Runs 2, 4 and 6)

induce greater errors than do the runs at the lower altitude.

To yield higher altitude runs with sfaller errors would

require the convergence tolerances to be made sraller. This,

of course, would increase the time for cover•enc-. The

convergence tire for those cases in this s:udy va-red from

S1S% to 25% of the time to go. Ftrther increaszs in this
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convergence time would decrease the worth of the solutions.

Again, the differences induced by the velocity varia-

tions are indistinguishable. Thus, the same conclusion is

reached. The major sources of e-ror is due to operating at

an altitude other than the linear reference orbit. This

error may be at least partially diminished by reducing the

allowable convergence tolerances, but this increases the

required time for convergence.

Some additional computational details are given in

Appendix C,
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0 VI. Pseudo Closed Loop Control Law

A closed loop control law would be desirable it, any real

time encounter. That is, you as a player would like to be

able to take advantage of any non-optimal play by your

opponent, thus bettering your final payoff over that which

would develop had you not taken odvantage of your opponent's

error.

Normally, closed loop solutions can be generated for

linear-quadratic problemz.. Since the situation treated in

this thesis is pseudo linear, linear in state but non-linear

in control, it was attempted to develop (or rather approach)

a closed loop solution as closely as possible, This chapter

discusses the development of that pseudo closed loop contro!

law.

Matrix Formulation

The relative difference state equations, Eqs (52), can

be written in the following -atrix form:

[Y'] - [F][Y] * [G) (60)

where

[ 0 1 0 0

1002
[F] - (61)

-001

o -l 0 OJ

0
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and

• •Au sino

[GJ] A (62)

Au cos •J

From the F matrix, one can find the fundamental or

transition matrix, 4 '
(TfT 0 ), for this system of equations.

Appendix E contains that 4P derivation.

Having the t-ansition matrix, the end states, Yf, can

be written in terms of the present measurable states Y0

[Yf] _ [(4rfto)][Yo] • (4'T'r)J[GC-)]dT (63)
0

0 w'aere G(r) contains the control parameters as a function of

characteristic time tau and the erd states. Thus if the

control matrix were zero, the problem would degenerate into

a strictly linear problem and the final states could

immediately be found by using the transition matrix to

operate on the initial states. In fact, a very rough first

approximation of the final states could be made in just that

way, i.e., assuming no control. This rough approximation of

the final states could then be used to provide the control

inputs, This technique would be one of the easiest to

implement, however, it would have tc be updated at very

short time increments due to the er-oneous assumption of

zero thrust, Also, this would not be a closed loop control.
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o Develop.ent

A theoretically more accurate, although more complex

solution can be generated by first solving the free-time

TPBVP thus getting initiil estimates of Vf and Tfr These

estimates can then be used in the control angle expressicns.

Having a control program it can simultaneously be used to

numerically integrate the equations of motion forward

(assuming both player,, play optimally) and to fly the actual

"trajectory. At periodic intervals, direct measurements of

the opponent's actual state can be made. These measurements

can be compared with the numerically integrated values. The

differences can be used to update the control program through

the use of the differential of Eq (63). That differential

Q must allow for changes in both the final states and final

time. Thus,

(AYff [(O(fTO MAYoI + a • 0 TM ])(f•olYlATf•-

+ a (f EO(Tf.¶)J(G(T)1d-,)&T
3Tf T

f Tr (ft (Tf1T)J[GCr)1dt)[AMf] (64)BYf 0

where AY0 is the difference between the values of the present

state as measured and as calculated from the free-time TPBVP,

A, ff is the amount that nust be added to the present esti..ate

of Yf and A If Is the amount that nust be added to the present
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estimate of Tf (which too was determined from the solutiorn

to the TPBVP). AYf is the difference between the corrected

Yf at Tf and the original value of Yf as is seen in Fig. 20.

These parameters are related in tne following way:

AYff a AYf + YjATf

or

AYf * AYff - Y¥T f (65)

Equation (65) can be used to replace AYf in Eq (64).

The result would be an expression in terms of the initial

known quantities (Y0 and AY0 ) and the two unknowns AYff and

SAr. C Another equation is needed to facilitate determination

of these unknowns. That other equation can be formed from

the Hamiltonian which must remain equal to zero at the "new"

final time T. + ATf. Thus Allf 0. Expanding,

SAY+ + AT 0

3H

But since from Eq (59), L - 0, the above equation becomes:
aTf

M 0 AY 0 (S6)ay fSa~ f

Substituting Eq (6S) into Eq (66) results in the second

equation in terms of AYff and Af

-T* (AYff - Y1T1f) - 1)
f
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F-

Correctee Y

f *f f + AT

0
Fig. 20. Relationship Between Differences in Y State
at the Original Final Time tf and at the Corrected

Final Time to AT l Yf ,

Now, the corbinatiou of Eqs (64) and (65) ctn be solved

for AYff in terms of A n Those expressions can then be

used in Lq (67) to priv do a s~calar equation relating AT f to

the known initial states, Solving, the vlue for ATa . can

then be used to providc AY ff. the q'lantity which must be

added to the original Y f estinate.

These solutions, tnen, are the corrections that must be

applied to the original estimate of the' final states and

final time. These new estimates can then be used tu update

0- the values of the control var)Ahles. The updated controls
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can then be used until another update is desired. This next

update could be required after some finite amount of time

had passed or after the errors between the measured and

calculated trajectories (AY 0 ), due to the opponent's non-

optimal play, exceed some specified tolerance. At that

point, Eqs (64), (6S) and (67) can then again be solved to

provide another control update.,

This lechaique, of using Eqs (64), (6S) and (67) to

update the control by a function of the present measured

state, is the pseudo closed loop control law that this

chapter set out to derive,

Numerical Test

This technique was tested numerically against two non-

0 optimum evaders. The basic situation was that of Run 4,

described earlier in this report. In the first case, the

evader's thrust angle was held constant at 180* and in the

second case, it was neld constant at a value of 0". In both

cases it was assumed that the exect solution to the TPBVP was

known. This of course could not be true in an actual opera-

tion, but served as a test case for this analytical investi-

gation. The exact solution yields the final states that

would exis- if both vehicles had been playing optimally.

For comparison purposes, each non-optimum evader also

was "flown" against a pursuer who followed his open loop

contrel. The minimum ý-eparation distances for these various

t2ajectories are tabulated in Table II1
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-o Table II

Minimum Separation Distances (NM)

Case Open Loop Pseudo Closed Loop

1. Both Optimum 20.6 ----------

2. Evader Thrust
at 180" 13.4 13.1

3. Evader Thrust
at 0" 13.7 44.9

Since in the non-optimum cases it is the evader who is

playing non-optimelly, the final separation distance should

be less than when both vehicles are playing optimally. In

addition, the pseudo closed loop technique should further

decrease that final separation distance.

Based on these premises, Table II appears to be plagued

with a large inconsistency in that the correction technique

applied agaii..t the 0" thrust angle evader increases the

final siparation distance over the open loop run:

Although that incr',ase is discourzging, detper analysis

of the resulting numerical test indicates the situation nay

not be as bad as it appears. That is, the corrections ATf

and AYff that %ere calculated in the course of the test were

in the correct direction. The aagnitude of the AY f correc-

tion, though, were too great too soon, The magnitude of

these corrections being too large caused the pursuer to over

correct his control program, This ovee correction resulted

0• in the pur:uer being taXcn off his optimum trajectory, By

71



GA/MC/72-7

o • the time the control law realized it had over corrected, and

started to recompensate, the scenario had reached the termi-

nal surface (the point of closest approach),

It should be noted that the updating by the control

system %as performed at a set periodic interval of about

every hundred seconds. The entire open loop game lasted some

800 seconds while the closed loop game terminated after only

570 seconds. Thus, in the latter case, only five updates

were made during the entire game. Since the errors AYo'S

grow between updates, those errors may have grown so large

as tc, invalidate the linearization. To check that possibility,

one additional test was run against the 00 evader with an up-

date interval half as long (i.e., about 50 seccnds), The

final seraration distance from that run was only 34.6 NN, a

marked improvement. Thus it is felt that the use of a shorter

interval between updates would keep the AY errors smaller

and thus diminish the over correction of the control, This

in turn would improve tne final separation distance,

Another possible explanation, more basi: in nature, for

the increased final separation distai.ce is that the siti•ation

investigated in this entire thesis nay just not lend itself

to this particular quantitative analysis. That is, the

"assumed low thrusts and large mass (made so to allow the

original constant mass assumption) coupled rith the rather

large value of final relative velocity between the spacecraft

may simply not allow any great degree ,if control,

- 0
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o To justify keeping the masses constant, the thrust of

the pursiter had been set at SO0 lb. and the weight of the

spacecraft had been set at ln,O00 It. The final transverse

velocity difference between the spacecraft was set at about

650 feet per second, to insure the two vehicles %ould "pars"

each other. Observing that the vehicles had been thrusting

in the third quadrant (with the evader leading the pursuer)

for some 800 seconds before the final conditions occur, It

can be shown that at the initiation of the encounter the

relative closing rate would be 650 fps plus an additional

value of up to 1600 fps. Thus, the initial ciosing velocity

between these two spacecraft is in the neighborhood of

ISO0 fps.

Q0 Thus, with an initial closing rate of that high, it

appears that the small thrust to weight ratios may simply be

too small to have much pronounced effect upon tLe final

separation distance.

Hence, the results of this rumzrical test of the pseudo

closed loop control technique are, unfortunately, inconclu-

sive, fIin-.er, it is recommended th.t future effoit in this

particular area use shorter update intervals and lrger

thrust to weight ratios, even at the cxpezse of thi conitant

mas3 3ssumptlon.



,;A/MC/72-7

VII. Conclusions and Recommendations

Conclusions

A two-dimensional pursuit-evasion encounter between

two constant thrust spacecraft in near-earth orbit has been

formulated at a differential game with control being provided

by the thrust angle. The spacecraft were given a high

closing velo:ity to insure the game would go to completion.

The thrust to weight ratios were kept low in order to assume

constant mass vehicles, The en-ounter took place in an

inverse square gravity field near the earth's surface.

The non-linear equations of ziction were linearized about

a circular reference orbit at the earth's surface, Open loop

solutions were generated for both sets of eqaations backward

in time from selected terminal states. The linear open loop

solution compared quite favorably with the non-linear solu-

tions for both vehicles playing optinally. Operation at

altitudes above the reference orbit induced errors, but these

were partially offset by allowing the velocities to be

greater than the reference orbit,

The linearization of the ejuations of motion provided

for clo'.ed form solutions to the costate veLtor, This, in

iurn, al'oded the control (thrust angle) expressions to be

simplified.

Usxag the simplified, or approximate, control expres-

sions, bo:S thv fred-time and free-time two point bnundary

value pr),,r,- wc-- t..ved. As was expected, the errors in
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these linearized solutions diverge fram the actual trajectory

a& ti"e passes. In addition, off reference altitudes were

again found to be the greatest contributor of errors, only

now the errors did not seem to be decreased appreciably by

any compensating velocity errors.

It was found that fairn' accurate free-time solutions

could be generated (within acceptable computer time limits

also) by requiring only moderate convergence accuracies.

As the terminal surface was approached, it became

ircreasiagly more difficult to obtain a free-time solution.

Thus, in an actual encounter, the initial free-time solution

should be generated when the time tc go is still reasonably

large. This initial free-time solution could then be

updated and improved,

A pseudo closed loop control technique was ýeveloped

eased upon the fundamental or transition matrix of the

linearized equations of motion, However, its effects upon

the particular encounter tested were inconclusive, Drobably

due to the inherent sensitivities of the problem, That is,

the assumed 14ti thrust to weight ratios coupled with the high

closing velocities appear to diminish the effectiveness of

the control.

Recommendations

Investigation of this problem has 'ed this author to

Sthiee main recommendations for further study.

0- First, since altitudc is the greatest contributoc to

eirors in the linearized solutions, it would bc fruitful to
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o linearize the equations of motion about an orbit which more

nearly approximates the altitude of operation. Once that is

done, then the results can be compared with the non-linear

solutions. This should improve the overall urcuracies.

Second, attempt to test a control program based strictiy

upon the transition matrix. Thus, the present measured

states could very quickly be transformed to end states, and

the exact trtnsformation stlected would be the one which gave

the correct terminal surface, i.e., minimum separation

distance. This method woulI be inherently erroneous as the

application of the transition matri: requires the assumption

that no control is to be provided, However, since the

process would be so rapid, it could easily be updated

n (tepeated) almost instantaneously and might allow for a very

easy control system. The purpose of the test would be to

check the accuracy of the technique,

Lastly, since this author encountcrsd :pparent senii-

tivity problems with this low thrust to weight, high closing

velocity scenario, it is recomnended that future investiga-

tors assur.e larger thrust to wcight ratios, even at the

expense of thCe cnstaut mass assumptioi.
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O Appendix A

Closed Form Costate Solution

The linear relative diffexence costate differential

equations, Eqs (54), can be solved in closed form, with

the aid of the costate end conditions, Eqs (57). to yield

expressions for the costate vector. The di'ferential

equations are repeated below-'

Pi " "P2 + P3 (S4a)

P2 1 "Pl + P4 (54b)

P1 . A (54c)

P4 -2P 2- P3(5d

The end conditions have been given as:

Pif = 
2

Yif (57a)

P2'-. (57b)

P3f , 2Y3f (57c)

P 4 0 (57d)__ .. _• 4f

It crn readily be seen that P, is a constant.,
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_ P3 (T) 2Y3f (A-i)

Using Cramer's rule on the remaining three equations

and letting D indicate different.ation with respect to T

yields:

D 1 0 P$ 1 0

1 D -l P 1  0 D -I

0 2 D -P3 2 D

or

3
(D * D)P1 = 3P3 (A-2)

The root, of the characteristic equation of the system

0 are 0, t i. The complementary solution is therefore

C1 4 C sin T + C cos T
1 2 3

Now, the forcing function is simply a constant. Since

there is already a constant term in the co'n.,lementary func-

tion, one must assume a particular integral of the form

P - KT. Putting this assumed solution into the differential

equation Eq (A-2) gives

0 K - 3P 3

Thus,

PI . C, + 3P 3 + C2 sin i * C. cos r (A-3)

I 1 30
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S o Likew ise ,

(D * D)P 2 0

which yields

P2 . C 4 C sin T * C6 cos r (A-4)

and

ID 1 P 3

(D D)P 4 - 1 D 0

0 2 _P3

- 2P3 + P3

3 3p 3

Again, one must test a particular integral of the form

P - KT and find that X - 3P 3 . Thus,

P4 = C.7 3P 3T + C8 sin T + C9 cos T (A-S)

These three equations for Pl. P 2 and P 4 nay .'.ow be

substituted into the origi,-,l cnstate differential equations

to obtain relationships among the nine constants

C1 , C2, . . C9 . Differentiating Eq (A-2)

*Pl 3P3 + C2 cos T - C.3 sin T (A-6)

but

08
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-- ' 0 
1 " 2 + P 3

.- C4 - CS sin T - C6 cos T * P3 (A-7)

"Equating like terms in Eqs (A-6) and (4-7),

C4  -2P5

C6 * -C 2

(:5 c C3

Now differentiating Eq (A-4)

- C Cos T - C sin r
P2 5 6

0 3 C3 cos 4 + C2 sin T (A-8)

but

pj= .P, 4 P4

. -C - 3P3 - C2 sin r - C3 "os T

+ C 7  3 3 3T * C8 sin r + C9 cos T (A-9)

Equating like terms in Eqs (A-8) and (A-9) yields

C7 1 I

S~~C 8 * 2C 2  a

CS* 2C

S9 32C3
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" o It is now possible to write the costate equations in

terms of only three unknown constants:

PI . C1  3 313T + C2 sin T + C3 cos T (A-10)

P2 ' "2P3 " C2 COS T + C3 sin T (A-11)

P4 - Cl + 3P3 T + 2C 2 sin T * 2C 3 cos T (A-12)

One can now use the transversality conditions, Eqs (57),

to solve for the three constants. Equating the transversality

conditions to Eqs ýA-10), (A-11) and (A-12) at T = Tf gives

2
Yif * C +3 33 Tf * C2 sin Tf + C3 Cos Tf (A-13)

-- 0
0 * -2P1 - C2 cos Tf 4 C sin T (A-14)

0 . C1 + 3P3Tf + 2C2 sin T. + 2C 3 cos Tf (A-IS)

Subtract Eq (A-15) from twice Eq (A-13) to yield

""4YIf C1 + 3P3T f

or

CI . 4YIf - 3P3 f (A-16)

Substitute hq (A-16) into Eq (A-IS):

0
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O 0 - 4Y1if 
3 P3 Tf + 3P 3 3 ÷f 2C2 sin Tf *2C 3 Cos f

- 2Y1if C2 sin Tf + C3 cos Tf (A-17)

Solving Eq (A-14) for C2

_'-='=" •2P3

"C 2 - 3 C tan r CA-18)2 cos rf 3 f

Substitute Eq (A-18) into Eq (A-17) to get

C 3 sin
2  Tf

0l O 2Y if - 2% tan r+ ; 0 C3 osf! cos 3f

Multiplying each term by cos TV

0 0 -2Y if COS T - 2P sin Tf +C 3

Thuis,

C3 . 2P3 sin Tf - 2Yif cos rf (A-19)

Substitute Eq (A-19) into Eq (A-18):

C2 2P os +2P sin 2 co f - 2Y sin T

2 -OT 3 COS T if f
fIf (-

2P3 cos Tf - 2Yif sin Tf (A-20)

One can now use the values of these constants to form

the following closed form expr-essions for the coststes:
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_ -I 1 i 4Y1 * 3P 3 (TTf) f 2P3 cos T sin T - 2Y1i sin Tf Sin T

+ 2P3 sin T cos T 2Yf cos Tf Cos I

- 4
YIf - 3P 3 (Tf-T) + 2P3 sin(Tf-T) -

2
Y if cos (T f-T)

= 4
YIf -

6
Y3 f(Tf-T) - 4Y3f sin (Tf-T)

- 2Yif cos (Tf- ) (A-21)

P2 --2P3 + 2P3 cas cos f * 2Yi si Tf cos c

S2P3 sin Ff sin T -
2
Yif Cos Tf sin T

= -2P3 + 2P3 cos (Tf-T) * 2Ylif sin ( Tf-¶)

= -
4

Y3 f * 4Y3f cos (Tf-T) + 2Y if sin (Tf-T) (A-22)

From before,

P 3 2Y3f (A-1)

_40
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o Lastly,

"p 4 4YIf "3P3Tf÷ 3P3T - 4P3 cos Tf sin T

- 4Yif sin Tf sin T + 4P3 sin Tf cos T - 4Yif COST COS T

4
Yif - 3P 3 (Tf-T) -

4
Yif COS (Tff-) * 4P3 sin (Tf-T)

- 4
Yif - 6

Y3 f (Tf-) - 4Ylf cos (rf-T)

* 8Y3f sin (Tf-T) (A-23)

Thus, the costates are functions only of the terminal

states and the time to go. This implies that the control

0 angle, which is a function of only the costates, is also a

function only of the terminal states and the time to go.

0
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Appendix B

Non-linear Traeetopri-s

This appendix displays in Figs. 21 through 26 the actual

optimum non-linear trajectories defined in Chapter IV,

Table I. In each run, the pursuer (,) is at a higher alti-

tude than the evader (u) and the pursuer has a greater

final velocity than the evader. The position angle THETA is

measured from the position at the final time.

These trajectories were generated by assuming the final

states and integrating backward in time as discussed in

Chapter IV. Those final states were also given in Chapter

IV. Other constants used in these simulations, but which

0 are only incidental to this study, are listed below:

Vehicles' weight 10,000 lb.

Pursuer's thrust 500 lb.

Evader's thrust 100 lb.

Vehicles' I 300 sec.sp

It has been assumed that the mass of each vehicle is

constant. Actually, in a real case, mass (m) would be

changing by the expression

a 0 m

where M0 is the initial mass, i is the propellant flow rate

and At the burn time. The accuracy of the constant mass

assumption lies in the maqnitude of the mAt term. The

0 smaller this term in relation to N0o ihe better the assumption.
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-1I.uo -1..20 -0.80 -1;.40 0.00D 0.403

THETA

Fig. 21,. Optimum Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 1.
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0 -o
C14 Pursuer

0 Evader

z 0
C;

(0
io

1 °:0

o co-
0

-1.60 -i.20 -0.0 -0.40 0.00 0.40

TlETR

Fig. 22. Optimum Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 2.
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o0 A Pursuer
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0
0

0

C2

Io
•.00D

0

"•-1.60 -1.20 -0.80 -;.40 0.00 0.40
THETA

Fig. 23. Optimum Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run 3.
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Fig. 24. Optimum Pursuer and Evader Trajectorice. in terms of "
-• ~Earth Central Angle (.Radians) and Radius, .Non-linear Run 4.00
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Fig, 2S, Optinun Pursuer and Evader Trajectories in terms of
Earth Central Angle (Radians) and Radius, Non-linear Run S.
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_ For this study, M0 - 10,000 lb/g = 310 lb sec 2/ft while
_ -T - -0.0517 lb sec/ft for the pursuer and five times

gIsp

less for the evader, Thus, each hundred seconds of burn time

would decrease the pursuer's mass by only 5.17 lb sec 2/ft, or

roughly only 0.2%. Thus, it is felt that the assumption of

constant mass is justified for this study.

Also shown in this appendix are the values of the non-

linear separation distance between the vehicles as a function

of time. Again, time is measured relative to the final time.

Thus, time is actually time to go. It can be seen that the

plots are all very similar.

0

0?
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0
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001
C0

L w

-160.00 -120.00 -80.00 -40.00 0.00 40.00
TIME, SEC RI0'

Fig. 27. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 1,.
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10. -120. i -eo.oo00 -4o0.0 o.00 40.00

ITIME. SEC *10'

Fig. 28. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 2.
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Fig. 29. Time History of Vehicle Separation Distan~ce for

Optimum Non-linear Trajectory Run 3,
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Fig. 30. Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 4.

0

97



CA/IC/72-7

o.D
CP

z

Zo,

00 a:

azoo -iro eo. GO -4o.00 0.cGo 40.00
TIME. SEC X10' -

Jc.

Fig. 31,- Time History of Vehicle Separation Distance ffor
--- •-•Optimum Non-linear Trajectory Run 5.
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Fig. 32.- Time History of Vehicle Separation Distance for
Optimum Non-linear Trajectory Run 6.
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o Appendix C

Discussion of Computer Solutions to the TPBVP's

This appendix discusses some of the computational

aspects of the solutions to the TPBVP's discussed in Chapter

V. All computer analysis was done on a CDC 3600 computer

system with a Calcomb plotting device.

Fixed-time Solutions

As was discussed in Chapter V. three points from each

of the six backward generated non-linear trajectories were

used as input data. Please note that as fixed-time solutions

it was assumed that the time to go corresponding to the input

data was known,

0 Since the program used actually attempts to converge to

the initial (or input) data, the convergence accuracy desired

relates directly to the real computer time required for this

convergence, The runs shown in Chapter V were required to

converge to within 0.0001 of the inDut values. CDC 3600

computer processing time corresponded almost directly to

180 seconds per characteristic time unit. That is, to con-

verge to input from 1.0 characteristic time units from the

terminal state required 180 seconds of computer time. Like-

wise, the data at (r-Tf) = -0.S took about 90 seconds and

the data at ( -0.2S took on the order of 45 seconds.,

Since one characteristic time unit is equal to about 806

0 actual seconds, the above discussion implies that given a
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O set of initial conditions, the fixed-time TPBVP would be

solved (converged to within 0.0001 of initial conditions) in

approximately 22% of the remaining time to go, This solution

time could be decreased with the allowance of looser

tolerances, or with the use of special purpose computers.

Free-time Solutions

Since in the free-time problem, the actual time to go

corresponding to the initial conditions was not known, a

somewhat arbitrary value was assumed. A fixed-time solution

was then generated to fit this particular time to go, The

final range squared rate for this solution was calculated.

Then the estimate of time to go was iterated upon to drive

the final range squared rate to zero. Hence, as discussed

in Chapter V, the free-time solution simply selected that

fixed-time solution which corresponded to the minimum final

separation distance.

By viewing the free-time solutions shown in Chapter V,

it wili be noted that in all cases the solution for time to

go is shorter than the actual time to go. This is because

the initial estimate of tire to go was selected to be smaller,

as discussed before, than the actual value and the program

then increases that value until the terminal range squared

rate was within sCee tolerance of zero. The curves shown

required that tolerance to b,- 10°S. A few runs were attempted

using 10 6, but the convergence had not occurred after 50% of

the tine to go had passed.
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Also important is the desired accuracy with which the

solution meets the given (measured) initial states. Remember

for the fixed-time solutions, the program was forced to meet

these states within 0.0001. Since each free-time solution

actually nvolves several fixed-time solutions, to keep the

overall cmnvergeuce time to within acceptable limits this

0.0001 tolerance had to be increased. After several tries,

it was fo~ind that 0.002 would work with fairly acceptable

results. That value, then, is the one that was used to

generate the solutions in this study.

010
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Appendix D

Transition Matrix Derivation

This appendix will derive the individual terms that

comprise the transition matrix 4 discussed in Chapter VII.

From the theory of linear equations,

_d J-f'T)]T •-[F(T)]T [cTfT)]T (D-1)

with the boundary condition

(40(fTf)] - [I] (D-2j

where I represents the identity matrix. From Chapter VI, F

has been determined to be a constant matrix:

0 1"-~ -0-0 2

(F] [
"1002

-1 0 0 1[0 -1 0 0J

Thus, Eq (D-l) is equivalent to

4-1i 0'h2 013 014 Oll *12 013 014 0 1 01

21 22 23 h 24 oil 2 3 014 0 0 2

'3i 32 33 34 3 2*3 - 00

41 0;2 043 *44 oil 42 043 *i4] 0 1' 0 oJ

0
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S13- 012) (014- 11) 0 (-fl3 20l12)

Zf23- 22) (
0

24-
0

21) 0 (423-2022)

=-- (0-3)

(33-532) (034-13) 0 (-433- 2032)

L(f43-o42) (044-f41) 0 (4043-2042)

which is actually sixteen equations vhile Eq (D-2) provides

sixteen boundary conditions at the final time. Since the

third column in the right hand side of Eq (D-S) consists only

of zeros, the terms corresponding to those parameters

0131 *23' 033 and 043) are all simply constants that do not

vary with time. Utilizing the boundary conditions, those

constants are seen to be

013 - 0 (D-4a)

f23 2 0 (D-4b)

033 " 1 (D-4c)

043 ' 0 (D-4d)

Now from Eq (D-3)

oil -"12

Oil ' -Oi2

14 + i
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S-= -= - 1 -= * -=-= -= ol

= 2012 * oil

or

Oil' O il ,

Normally, the solution to the above expression would

involve terms like cos T and sin T. However, with the aid

of hindsight and the form of the solutions in Appendix A,

let the solution here be written in terms of Tf - T, or AT

Oil - A + B sin AT + C1 cos AT

Oi 1(T1f = A11 1 C11

S•.1

or

A11 1 c11

Thus

Oil (T) - CI + B 1 sin AT + CI1 cos AT

1 ÷ 11 sin AT + C 1(COS AT - 1) (D-Sa)

Again from Eq (D-3).
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= ; 0 21

oil '-22

* 24 + f21

-ý ' " •4 * oi

- 2 22 01*

• *•

or

0-. 0

0 As before, let

*21 ' A21 + B21 sin T * C21 cos A-

021('d) , A2 1 + C2 1

-0

or

A2 1 * -C 2 1

Thus,

021(T) B21 sin AT C2 1 (cos AT - 1) (D-Sb)

-0 Again from Eq (D-3),
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-*; * '32

. 0 31 - 034

OW • '31 "- 34

3 Oh . 1 * 2032

*; * I + 2 - 2031,

•3 - Of1
"* 3-

or

Let

031 A + B31 sin AT + C31 cos AT - 3A•

031 ( 31 c31 3
* 3 1 (rf) "A 3 1 * C:3 1

-0

or-- A 0-

A31 c 31

Thus,

-31 B31 sin AT C 31(cos AT - 1) - 3AT

(D-Sc)

- 0
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-0 Back to Eq (D-3) for

411
041 -042

" 41 - 044

04 - 0444

0 4, + 2442

441 - 204,

41

or

oil. + ' - 0

whose solution is

041 " A4 1 * B4 1 sin T * C41 Cos AT

41(T f) . AA4 1 * C4 1

0

or

A41 -C41

Thus,

""41 B41 B Sin AT * C4 1 (coS AT - 1) (D-Sd)
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Ni ow, beginning the second column of the transition

•12 1 -1I

B•l cos AT - 1 sin AT

0 1 2 (Tf) - B
3 u

.0

Thus

*12 '- C 1 sin AT (D-6a)

and

S0 I * C11 (COS AT - 1) (D-6b)

Also,

'p22 - -2l

1- B21 COS At - C2 1 sin AT

22 (T f1 )= B2 1

-1

Thus,

-22 * cos AT - C2 1 sin AT (D-6c)
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O 21 * sin AT + C(21 Cos AT (D-6d)

Also,

-2 + B31 cos AT - C31 sin AT

4 3 2 (Tf) - -2 + B3 1

-0

or

B3 1 -2

Titus,

0 3 2  2 cos AT - C3 1 sin AT - 2 (D-6e)

and

f31 2 sin AT + C3 1 (cos At - 1) 3AT

(D-3f)

Also,

-42 4 "* ] 1

-. B41 cos AT - C4 1 sin At

-•42(T f) - B41

0
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e Thus,

042 " "C41 sin A" (D-6g)

and

*41 ' C4 1 (cos AT - 1) (D-6h)

Also

#'14 ' #2 + oil

. CI1 cos AT .1. Cll cos AT - C

"- 2C1 1 cos At 1 C

414(Tf) = 2C 1 1 . I - C

- 0o
•0

or

cll = -1

Thus

#14 -2 cos AT * 2 (D-7a)

and from Eq (D-6a),

4'12 " sin AT (D-7b)

-A0

-- - 1ll
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from Eq (D-6b),

* Ii - (Cos A

* 2 - cos AT (D-7c)

Again from Eq (D-3),

24 . 2" 2 * oil

- sin AT * C21 Cos AT + sin AT

+ C2 1 cos AT - C2 1

* 2 sin AT + 2 C2 1 cos AT - C2 1 (D-8)

*24 (T f - 2C21 - C2 1

_ 0 C 2 1

-0

Thus

-24 2 sin AT (D-9a)

Also, from Eq (E-6c),

022 - cos AT (D-9b)

From Eq (E-6d),

*21 ' sin AT (D-9c)

Once more using the original expression from Eq (D-3).

-- 10
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0 34 ''2* 31

a 2 sin AT * C3 1 cos Ai + 2 sin AT

+ C 31 COS AT C 31 - 3AT

- 4 sin AT + 2C 3 1 cos AT

- C - 3AT (D-10)

* 3 4 (Tf) = 2C 3 1 - C 3 1

" C3 1

-0

Thus

0 034= 4 sin AT - 3AT (D-11a)

and from Eq (D-6e),

032 = 2 cos AT - 2 (D-llb)

and from Eq (b-6f),

031 = 2 sin AT - 3AT (D-11c)

Now, lastly from Eq (D-3),

ý44 = #42 * 441

. C41 COS AT C4 COS AT - C41

- 2C 4 1 COS AT - C4 1  (D-12)

113



GA/MC/72-7

0 44(Tf 2C 41 " C41

: C4 1

Thus,

-44 * 2 cos AT - 1 (D-130)

and from Eq (D-6g),

*42 * - sin AT (D-13b)

From Eq (D-6h),

-41 ' cos Ar - 1 kD-13c)

0-And now, finally, Eqs (D-4), (D-7), (D-9), (D-1l) and (D-13)

constitute the solution to the transition matrix. Thus

me(2 - COS AT) (sin AT) 0 (2 - 2 cos At)

lie (sin AT) (cos AT) 0 (2 sin AT)

(2 sin AT - 3At) (2 cos AT - 2) 1 (4 sin AT - 3AT)

(cos AT - 1) (-sin At) 0 (2 cos AT - 1) J

0.
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